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A general fourth order differencing scheme proposed by Professor H.-O. Rreiss of 
Uppsala University is developed and applied to three viscous test problems to verify the 
accuracy and applicability of the technique. The procedure is atypical since only three 
nodes are necessary to obtain the desired fourth order accuracy. This is accomplished 
by a differencing technique which considers the function and all necessary derivatives as 
unknowns. The relations for these derivatives yield simple tridiagonal equations which 
can be easily solved. This differencing can be combined with either explicit or implicit 
time differencing with little difficulty and only a few changes in the solution procedure. 
The test problems solved are Burgers' equation, Howarth’s retarded boundary layer 
flow, and the incompressible driven cavity. Comparisons of the fourth order results 
with those computed using second order methods are presented for each test case and 
clearly indicate that the accuracy achieved by these fourth order computations is always 
significantly better than current second order procedures. 

The ultimate objective of any numerical calculation is the generation of accurate 
results. As the problems treated become more complex, the standard second order 
methods become less suitable for use due to the increase in the number of grid 
points necessary for accuracy. In some cases, the storage requirements of the 
present-day computers are exceeded. Consequently, higher order methods should 
be developed and utilized whenever possible. 

In a recent report [l] a suggestion made by Kreiss, pertaining to a new compact 
differencing of fourth-order accuracy, was mentioned. No details of the method 
were presented and the scheme had not been tested. The present work represents 
a study of this new method to determine the feasibility of its use as well as to verify 
the high order of accuracy claimed. No attempt was made during the present study 
to optimize the computer programs utilized. 

The method as originally proposed, and mentioned in reference [l], was 
conceived to be of use in hyperbolic problems. It was used in that manner by Ciment 
and Leventhal [2]. However, the present paper will deal with parabolic problems; 
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either truly time dependent, or marched in some fictitious time to reach an asymp- 
totic steady state. The major difficulty to be overcome using this Kreiss method, 
as will be noted in the following sections, is the imposition of boundary conditions. 
Thus, test problems will be presented with increasingly complex boundary con- 
ditions. 

THE METHOD 

The usual objection to fourth order schemes comes from the additional nodes 
(besides the standard three) necessary to achieve the higher order accuracy. Besides 
the attendant difficulties of having to consider two fictitious nodes when a boundary 
point is being computed, the additional nodes almost preclude the use of fourth 
order implicit methods since the matrix which arises is not the simple tridiagonal 
form produced by second order schemes. The differencing proposed by Kreiss, 
however, is fourth order, and compact, that is, it retains tridiagonal form; hence, 
matrix inversion can be accomplished by the Thomas algorithm. 

As suggested by Kreiss, the first and second differences are approximated by 

Do 
yd = (1 + Qh2D+D- yn' ) (14 

D+D- 
yE = ( 1 + (l/12) h2D+D- Ym' > 

where * 

DoYn = w~)(Yntl - Yn-1); D+Yn = Wh)(Y7a+1 - Ynh 

D- Yn = WNYn - Yn-1). 

In practice, Eqs. (1) are used as follows. Set the derivatives equal to some other 
function, say 

I Yn = F n; y:: = s, . (2) 

Then solve for these new functions Fand S from relations obtained after multiplying 
by the denominator in either (la) or (lb). These relations are 

8~n+l+ u-5 + QLI = ww(Yn,, - Yn-11, W 

U/W &+, + V/6) & + U/12) Sn-, = (llh2)(~n+~ - 2yn + an-1). (3b) 

These two equations yield a tridiagonal matrix for the solution of F or S. With 
the addition of the defining equation for y, the set of three equations for the three 
unknowns, y, F, and S, can be solved. The stability properties of this system are 
discussed in the next section for a linearized model problem. 
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The accuracy of this scheme is easily obtained by Taylor expansions of Eqs. (3). 
The resulting truncation error is 

F;, = yn’ - (l/180) h4yV, (44 

S, = y; - (l/240) h4yv1. (4’4 

The usual five-point centered difference scheme of fourth order can also be 
generated from relations (1). Expanding the denominators by the binomial theorem 
for small h and keeping only the first terms gives the standard differencing in com- 
pact form 

Fn = D,(l - QPD+D-) y, , 
s, = D+D-(1 - (l/12) h2D+D.J yn . 

The truncation error here is 

F,, = in’ - (l/30) My”, Pa> 

s, = y; - (l/90) My”I. V-4 

So, although the new scheme and the standard representation both exhibit fourth 
order accuracy, the Kreiss scheme should generate slightly more accurate results 
due to the smaller coefficients of the truncation error terms. 

BURGERS' EQUATION 

A simple equation which exhibits the interplay of convection and diffusion 
present in viscous flow problems is Burgers’ equation. This equation is generally 
used as the standard test case for numerical procedures proposed for parabolic 
equations. The equation is written in a coordinate system moving with the wave 
so that the steady state waveform can be computed. Thus, the equation to be solved 
is 

4 + (u - 4) Kt! = v&z (6) 

with u(- co) = 0 and u(+ co) = 1. The difference form of this equation using 
Kreiss differencing in space, and simple (first order accurate) forward time 
differences yields. 

[(u;+~ - u,“)/dt] + (u - +) Fim = a&i”, 

;(Fz, + 4F<” + FE,) = (1/2dx)(u& - UT”_,), 

(1/12)(S,“,, + 10sim + Sim_l) = (l/Llx2)(z& - 2UiP + U&) 

where m is either n or IZ + 1. 

G-4 

U’b) 

(7c) 
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Note that the time level on the first and second derivatives in Eqs. (7) have not 
been specified, and the nonlinear convection term has been written as a, as yet, 
unspecified. The crude time differencing was chosen since the temporal development 
of the solution is not being sought, only the steady state is required; furthermore, 
previous experience indicates (and the results verify) that this time truncation error 
would not be a factor in the final steady state. 

Either explicit or implicit methods can be chosen to integrate Eqs. (7), the only 
difference being the time level chosen for F and S. Choosing the old time level, 
m = n, yields an explicit method. In this case the nonlinear coefficient is simply 
D = uin. An extremely simple integration scheme arises. Given an initial zQ, 
Eqs. (7b) and (7~) immediately yield Fin and Sin by simple tridiagonal matrix 
inversions. These derivatives are used in (7a), which yields u;+l by quadrature. 
The simplicity of the method of offset somewhat by stability limitations on the time 
step. Performing a linear von Neumann stability analysis on Eqs. (7) gives 

,k? = v At/Ax2 < Q; C = o At/Ax < (+)li2 (8) 

as necessary conditions for stability of the explicit integration. Although these 
appear to be more restrictive than the usual stability for second order accurate 
explicit forward time integration [3], i.e., 

p < a; c d 1, 

the actual size of the time step, At, can be much larger in the fourth order method 
if the same accuracy in the solution is desired as is obtainable by second order 
methods. To obtain similar accuracies, the fourth order method can take signi- 
ficantly larger Ax, and so despite the somewhat smaller /3 or C, At itself is much 
larger. 

Taking the time level of F and S in Eqs. (7) to be n + 1 gives a fully implicit 
system of equations for u, F, and S. The three equations (7) are a coupled set and 
must be solved simultaneously for the algorithm to be fully implicit. Thus, the 
integration technique now consists of inverting, at each time step, the block tri- 
diagonal matrix (each block is 3 x 3) generated by Eqs. (7), instead of the usual 
scalar tridiagonal matrix. In addition, the nonlinear a must be determined at each 
time level, either by iteration or extrapolation. Although this entire process is 
time consuming, it is compensated by the fact that a von Neumann stability analysis 
shows the implicit integration to be unconditionally stable for all At. Similar 
arguments hold if an implicit Crank-Nicolson integration, where m = n + +, is 
chosen. 

As the integration of Burgers’ equation was the first experiment to be made with 
the fourth order method, simplicity of the solution procedure was sought. Thus 
the explicit integration was used. The domain of integration was chosen such that 
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the region where the wave steepened was well within the solution domain, and 
therefore all boundary conditions were assumed known. The boundary conditions 
imposed on the numerical solution were u(+5) = 1 and 4-5) = 0. A linear 
initial profile was chosen for U, and then the solution was marched in time until the 
time derivative was found to be some specified small value, and this was assumed 
to be the converged solution. 

Various solutions of Eq. (6) were obtained over a range of v, dx, and At. Some 
of these are shown in Table I compared with the exact solution for the steady 
state, and a second order accurate solution of Burgers’ equation for two different 
grid sizes. 

Note that for the larger value of the viscosity (v = $) the fourth order solution 
is accurate to four decimal places when compared with the exact analytical solution. 
The second order finite difference scheme, although accurate to two decimal places, 

TABLE I 

Comparison of Computed Values of Solutions of Burgers’ Equation with 
Exact Analytic Results 

x Exact Kreiss (h = 0.2) F.D. (h = 0.2) F.D. (h = 0.05) 

0 0.5 0.50800 0.5000 0.5OOOo 
0.2 0.68997 0.69033 0.6999 0.69054 
0.4 0.83202 0.83224 0.8447 0.83276 
0.6 0.91683 0.91687 0.9269 0.91744 
0.8 0.96083 0.96082 0.9673 0.96123 
1.0 0.98201 0.98199 0.9857 0.98225 
1.2 0.99184 0.99182 0.9938 0.99197 
1.4 0.99632 0.99631 0.9973 0.99638 
1.6 0.99834 0.99834 0.9988 0.99838 
1.8 0.99925 0.99925 0.9995 0.99927 

Y = l/16 

Kreiss (h = 0.1) 

0 0.5 0.56000 0.5000 0.50000 
0.2 0.83202 0.83825 0.9000 0.83224 
0.4 0.96083 0.95933 0.9878 0.96082 
0.6 0.99184 0.99216 0.9986 0.99182 
0.8 0.99834 0.99809 0.9998 0.99834 
1.0 0.99966 0.99974 l.oooO 0.99966 
1.2 0.99993 0.99989 1.0000 0.99993 
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suffers greatly from a lack of accuracy when compared to the fourth order method. 
A fourfold decrease in the grid size in the second order accurate solution for 
v = & still does not give as accurate results as Kreiss’ method. 

Decreasing the viscosity to v = l/16 gives a more striking comparison of relative 
accuracy, as can be seen in Table I. The Kreiss method still retains fairly good 
accuracy, wheras the accuracy of the finite difference scheme has deteriorated 
badly. Burgers’ equation has a Reynolds number scaling which gives equal values 
of u for constant v/Ox. This was tested for the v = l/16 case by halving the grid 
size. Both the Kreiss method, shown in Table I, and the finite difference method 
reproduced the equivalent v = 9, dx = 0.2 results when run on a dx = 0.1 grid. 

The existence of the analytic solution also aids in the estimation of the accuracy 
of the method since the numerical solution can be compared with it rather than 
with other numerically computed results. Figure 1 shows the maximum difference 

0.1 0.5 1.0 
AX 

FIG. 1. Convergence rate of Kreiss’ method for Burgers’ equation. 

between the computed solution and the exact analytical solution for three different 
grid spacings. The slope of the curve gives the exponent in the truncation error 
which in this case is four. Hence the method converges with fourth order spatial 
accuracy confirming the estimated truncation error of Eqs. (4). 

Note that relation (8) gives an estimate of the work necessary to reach the above 
steady state solutions for various grid sizes. For Kreiss’ method, halving the grid 

s8IIIglI-7 
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size means about four times as many steps, since dt GC LW. To acheive the same 
spatial accuracy by a standard second order method, the grid size must be reduced 
by four. However, the stability restrictions for these explicit methods are essentially 
the same as those of the fourth order methods, hence the work needed is increased 
sixteenfold. The validity of the stability restriction (8) was tested by increasing 
the time step, dt, for a fixed grid size. Convergence was obtained for fi = 0.325, 
but for /3 = 0.350 (i.e., /I > 8) the solution diverged confirming the linear von 
Neumann analysis. 

BOUNDARY LAYER EQUATIONS 

The next class of problem examined with Kreiss’ method are problems where one 
boundary condition, necessary for specification of U, F, or S, is unknown. An 
excellent example of a problem of this type is a nonsimilar boundary layer flow. 
The incompressible boundary layer equations consisting of the momentum and 
continutity equations are [4] 

uu, + vu, = u,u,, + vu,, , 

uz + i& = 0. 

These can be written in similarity form by introducing the transformation 

6 = x; -q = y/(2vx)1/2; fi = (42iy2 u 

which yields 

2%UUE + (u - v> &I = 2&e%, + %?I, 

a+ - ?p, + II, = 0. 

(94 
Pb) 

In difference form these become 

i-t1 
gi+1/24f1/2 uj & uC ) 

( + (v:;;;; - T)r+l,2Uy2) F3i+l’2 

= 2(5u,u,Ji+1’2 + si+*12, (loa) 

iF,‘=,l+ #F;+l + $F;:; = (l/2477)(2&; - uf’;), (lob) 

(l/12) Sj;,1 + (5/6) sf” + (l/12) Sjt; = (l/d$)(U;:; - 2u:+l + z&Z;), (1Oc) 

where, for any of the dependent variables 



HIGHER ORDER COMPACT DIFFERENCING 97 

where an implicit Crank-Nicolson scheme has been written to integrate the 
momentum equation; the continuity equation will be discussed shortly. The implicit 
method was chosen for this problem in order to eliminate the stability difficulties 
encountered when u approaches the no-slip boundary condition at the wall. 
Second order integration was chosen since, for this problem, accuracy in the 
marching direction will be important to trace the history of the boundary layers. 
The discrepancy between the second order e truncation and the fourth order q 
truncation in Eqs. (10) above lowers the accuracy from fourth order, but better 
than second order accuracy was expected. To complete the specification of the 
problem, boundary conditions for all the variables are 

q=o: u=o, v = 0, s = -2&,u,f ; 

7#7-FCO:u=ue,. F= 0, s = 0. 

The boundary condition on S at 7 = 0 is obtained by applying the boundary layer 
equation, (lOa), at the wall. The outer edge values on F and S assume that the 
conditions are applied in the inviscid outer flow. These are all the conditions that 
can justifiably apply since F at r) = 0 is the shear at the wall, and this is usually what 
we are seeking to determine. However, for the differencing (lob), the function F 
is obtained from a tridiagonal matrix, and two boundary conditions are required 
for the numerical solution. 

At each 4 step, the solution procedure consisted of solving the 3 x 3 block 
tridiagonal system for U, F, and S generated by Eq. (lo), and then solving the 
continuity equation, (9b), for v. This value of v was then used to generate new 
values of U, F, and S, and the iteration cycle repeated until convergent values of 
the first derivative at the wall, the shear, were obtained. 

Since the boundary layer equations are iterated at each step, the simplest 
condition for F which yields fourth order accuracy, and does not destroy the 
tridiagonal nature of the solution is chosen. A one-sided difference on u is written 
using the last iterated value, so the boundary condition lags one iterate behind 
the solution. The form used was 

Fl = (-12~~ + 48u, - 36~~ + 16~~ - 3uJ12 dv. (11) 

Finally, the integration of the continuity equation must be considered. As 
mentioned above, continuity was solved for v after the momentum equation was 
solved for II, F, and S. The integration of the continuity equation was accomplished 
by the standard second order scheme 
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or by a fourth order scheme 

- (gji+l’2 + 4yj-,,,F;Iy,g + qie1F;y2)], (12’3 

where the half-point values (j - +), are obtained from fourth order Lagrangian 
interpolation. Both schemes were used in the calculations to be shown. 

As a test problem for the boundary layer equations, the classical linearly retarded 
boundary layer past a flat plate, originally solved by Howarth [5], was used. Using 
the notation of the present paper we have 

24, = l-4. 

In addition to Howarth’s local similarity series solution, this problem has been 
treated numerically by Smith and Clutter [6], and Keller and Cebeci [7], among 
others, affording the problem a convenient check of numerical solutions. 

The aim in the Howarth problem is an accurate prediction of t history of the 
flow, so the .$ = 0 initial solution needs to be predicted accurately. If [ is set equal 
to zero in Eqs. (lo), the classical Blasius similarity boundary layer equations are 
obtained [4]. The Kreiss diIferencing procedure was used to generate a Blasius 
profile to start the Howarth solution. Since this profile is obtained by marching 
Eq. (10) to similarity (5 derivatives equal zero), again, as in the steady Burgers’ 
solution, the results should be close to fourth order, due to the elimination of the 
second order I truncation error. 

Figure 2 gives the Blasius profile for five different values of dq. The symbols 
are shown only for the largest value dq = 1.0. On the scale used for this plot, 
no difference can be distinguished between any of the calculations. 

Table II compares the first derivative of u at the wall computed by the Kreiss 
method, with those of one of the best second order schemes available, the Keller- 
Cebeci box method [7]. Note that for any comparable dr) the fourth order method 
gives significantly better accuracy than the box method when compared with the 
exact value of Fw = 0.469600. Even for the crude & = 0.2 mesh, the Kreiss 
scheme generates fourth decimal place accuracy. These results were obtained using 
the fourth order Runge-Kutta continuity solver. When the second order continuity 
scheme was used, only Gfth decimal place changes were apparent. 

The results used the implicit, block tridiagonal inversion scheme mentioned in 
the Burgers’ equation section of this paper. Step sizes four orders of magnitude 
greater than the diffusive stability limit were used with no adverse effect on the 
stability properties. The lagged boundary condition on F appeared to have no 
affect on the procedure. 
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FIG. 2. Calculated Blasius profile for five values of dr). 

TABLE II 

Fourth Order and Second Order Computations of 
Blasius Shear Function at the Wall 

4 

1.0 
0.5 
0.4 
0.333 
0.3 
0.2 
0.1 
0.05 
w 

Kreiss 

0.430834 
0.465713 
0.468430 

0.469381 
0.469582 
0.469599 

Box 

0.506065 
0.478914 

0.473753 

0.469975 
0.469694 
0.469601 

a The most accurate value obtained (using Richardson 
extrapolation). 
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With the computed Blasius solution as an initial value, the Howarth problem 
was computed for various grid sizes. In the initial region of the flow where 
Howarth’s series is accurate, again the Kreiss scheme for a dq = 0.2 gave four 
decimal place accuracy compared to Howarth. However, in this type of flow, the 
point of separation is of utmost significance. Some numerical procedures have 
difficulty approaching separation; this was not encountered with the Kreiss 
method. Table III shows the calculated separation point for various values of .d~. 
Other calculated values found in the literature are tsep = 0.119813 quoted by 
Rosenhead [4]; &, = 0.11985 calculated by Keller and Cebeci [7] and tsep = 0.120 
estimated by Smith and Clutter [6]. 

TABLE III 

Calculated Position of the Separation 
Point in Howarth Flow 

Al f 8eP 

0.5 0.119989 
0.4 0.119893 
0.3 0.119839 
0.2 0.119818 

All the fourth order values given in Table III were computed using the fourth 
order continuity integration. When the second order integration was used no 
difhculty ensued in the e integration nearing separation, but &sea exceeded 0.120 
for all LIT values used. Thus, the small change in the wall derivative noted in the 
Blasius solution becomes important when the point of separation, defined as that 
5 where F, = 0, is approached. 

INCOMPRESSIBLE DRIVEN CAVITY 

As the final test of the Kreiss ditferencing procedure, an extension to two spatial 
dimensions was chosen. The incompressible driven cavity was originally solved 
analytically [S], and followed by a numerical solution using relaxation 
techniques [9]. Recently, it has again become the study of some numerical experi- 
ments [lo, 11, and unpublished results obtained at NASA Langley]. This flow is 
an excellent test case since it exhibits extreme boundary complications in addition 
to the added spatial dimension. 

The geometry consists of a square cavity filled with an incompressible fluid. 
At the initial time the upper wall is given a unit velocity (see Fig. 3), and the final, 
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FIG. 3. Schematic of incompressible driven cavity showing geometry, and velocity boundary 
conditions. 

asymptotic, steady state solution is sought. The equations of incompressible flow, 
in terms of the vorticity and stream function, cast in nondimensional form are 

f;t + 4, + dv = (l/WL, + Ld, (13) 
v?P = 5. 

where 
(14) 

u = ul,, v=-yj, 

The boundary conditions which can be specified are, on all four bounding sides, 

Y = const = 0; (154 
YE = -v, Y, = 24; Wb) 

and 
VY = Ya, = 5; x=0&x= 1; (164 
VY = ul,, = 5; y=O&y= 1. (16b) 

No other physical conditions exist. 
The implicit integration formulation of the Kreiss procedure is desired, since the 

explicit stability restriction (through the cell Reynolds number) prevents the 
calculation of any significant Reynolds number flow; a test case of R = 100 was 
desired. To retain the tridiagonal nature of the matrices involved, an AD1 type 
time marching procedure was formulated. Thus, to take one full time step in the 
vorticity transport equation requires the solution of 

& (<zj - Z&) + u * ZFXzj + u * ZFY,Tj = 4 (ZSXEi + ZSY,Ti), (17a) 

-& (Z$ - z;,> + u . ZFXt;l+ o . ZFY,T, = 4 (ZSX;;’ + ZSY&), (17b) 
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where 
z = t, ZFX = 5,) z&w = La , 

etc. To complete the formulation, Kreiss relations similar to Eqs. (3) have to be 
included for evaluation of ZFY*, ZSY*, ZFX”+l, ZSXn+l. At each half-step of 
the AD1 procedure, a block tridiagonal matrix is inverted for 5 and its two deriv- 
atives. 

After completion of the complete AD1 step, the Poisson equation is cast in a 
time dependent form 

v?P = 5 + YT (18) 

and solved by the AD1 extension of the Kreiss procedure. Since the asymptotic 
steady solution is sought, the Poisson equation (18) is not solved to convergence 
at each corresponding 5 time step. Rather, the solution y/is simply made consistent 
with the new 5 values by taking a reasonably small number (five were used for all 
the following) of fictitious time steps 4~. 

Central to the use of this fourth order procedure is the requirement that boundary 
conditions be specified for the derivatives of the function being solved for, in 
addition to the function itself. For the solution of Y, Eqs. (15) and (16) give all the 
necessary information needed on the boundaries, assuming 5 is known from the 
previous time step. But, this 5 calculation also needs boundary conditions, and 
none exist physically. The vorticity equation, (13), can be written on the boundary 
at each ADI step to provide a relation for the second derivatives. However, no 
simple evaluation of 5 or its first derivatives is apparent. This was noted in a 
previous attempt to solve this problem [12]. Thus, here is a case where two 
boundary conditions are unknown, Actually, as will be shown later, there are even 
more. 

The solution to this difficulty can be accomplished by the following argument. 
The simple question can be asked: What is the most accurate relation which can 
be written relating any function and its first two derivatives by a one-sided 
differencing, and still retain a tridiagonal form ? That is, what is the best accuracy 
attainable by 

Ag, + Bgi+l + CFi + DFi+l + ESi + G&+1 = 0, 

where F = g’, S = g” and A to G are constants to be determined ? The result is 
a relation containing one free parameter, K: 

gi - g,+l + h[KFi + (1 - K) Fi,,] 

+ G [(K - &) Si + (K - $) Sj+l] + ; (K - &) g’” = 0. (19) 

Note the order of the truncation error. 
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There are some very obvious choices for K. First choose K = 1 or K = 0. 
These give the relations 

gi - gi+l + hFi + h”(*si + 4Si+l) + OCh41 = O9 (204 

gi - gC+l + hFi+l - h”($$i + @i-+1) + o(h4) = 02 (20’4 

which isolate the first derivative at a point. Equations (20) are identical to the 
spline relations given by Rubin and Graves [II]. Another simple choice, K = 4 
or K = Q isolates the second derivative at a point. 

gi - gi+l + h(&Fi + Wi+d - (h2/6) St+, + o(h4) = 0, (214 
gi - gi+l + h(j~iF, + $lii+l) + (h2/6) si + o(h’) = 0. (21b) 

The final choice for the parameter is K = 4. This eliminates the fourth order 
truncation error, yielding an expression of higher order, 

gi - gi+l + (h/2)(4 + fi+l> + (h2/12)(sd - si+l) + O(h’) = O- (22) 

This relation has been given before by Liniger and Willoughby [13], in a somewhat 
different form, and is called by them the second diagonal Pad6 approximant. 

Any of these relations (20)-(22) can be used to generate the additional boundary 
conditions necessary for 5 and its first derivatives. Using the PadC approximation 
(22), for example, written in terms of Y, and its derivatives normal to the boundary 
y = 1 gives 

Yi,j - yivj+l + (h/2)(yFYi.j + ?@Yi,j+l) + (h2/12)(YSYi,j - YSYi,j+J = 0. 

But, from, (16), we know the relation between 5 and the second derivatives, thus 
at the upper wall 

(23) 

Here note the truncation is O(hs) since the relation (23) is written for the second 
derivative of Y and not Y itself. Using the PadC approximant written in terms of 
1 gives the desired relation for the first derivative at a wall. 

The same methodology holds when the lower order relations are to be used. 
Since the first and second derivatives appear very simply in (20) and (21), Eqs. (20) 
are used to generate the first derivatives of 5 at the boundaries, and 5 at the 
boundaries is obtained from equation (20) written for Y. 

The suitability of the higher order conditions (22), has been tested by a boundary 
stability analysis. For a simple scalar parabolic equation, boundary conditions 
given by Eq. (22) can be shown to satisfy the requirements given by Varah [14] 
for parabolic equations. 
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Two other details of the integration scheme need elaboration. It was mentioned 
that the second derivative of [ could be calculated from the governing equation, 
(13). This is true on any of the bounding surfaces where the velocity vanishes 
exactly, for then, no first derivatives appear. But on the driven wall, u = 1, and 
the equation is 

Thus a coupling between unknown boundary values of c,, and 5, occurs, and a 
consistent fourth order evaluation of 5, using the compact relation for the first 
derivative, Eq. (3a), must be included in Eq. (24). 

The other boundary condition difficulty that arises is the correct prescription 
of c*, the zeta value at the first ADI step. The usual AD1 scheme is second order 
in time, but Fairweather and Mitchell [15] have shown that this can be degraded 
by rapidly time varying 5, and give the correct conditions to apply to retain the 
second order accuracy. Since only the steady state solution to this cavity problem 
is sought it was hoped that the application of crT1 at the first step would suffice. 
This would not work, and so 

was used successfully instead of the true second order accurate condition. No 
attempt was made to incorporate Fair-weather’s conditions because the actual time 
accuracy was unimportant here. 

RESULTS 

The cavity problem was run for a standard test case of R = 100 on a 15 x 15 
grid with a time step equal to the CFL limit. Both Pad6 boundary conditions (22), 
and the lower order spline boundary conditions (20), (21) were used in the cal- 
culations. A plot of stream function and vorticity contours are shown in Figs. 4 
and 5. The numerical results were compared with the spline calculations of Rubin 
and Graves [ 1 l] on the same grid, and some second order finite difference solutions 
obtained at NASA Langley using the AD1 method on the same grid, and on a finer 
57 x 57 grid. The 15 x 15 ADI calculations agree exactly with the published 
values of Mills [9]. 

The fine grid second order solutions were very well approximated by the Kreiss 
procedure on the standard 15 x 15 brid. Table IV shows the value of the vorticity 
on the upper wall. Note the excellent agreement of the fourth order method with the 
very accurate second order solution. This agreement is even better for the-stream 
function values in the row through the maximum Ypoint. This is shown in Table V. 



c 
FIG. 4. V&city contours for R = 100 driven cavity. 

FIG. 5. Stream function contours for R = 100 driven cavity. 
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All boundary values for Y and its derivatives are known, so any inconsistencies 
introduced by either relations (20), (21), or (22) are avoided, and Y values more 
accurate than the 5 values are produced. 

Other characteristics of the 57 x 57 calculations were also reproduced. The 
u-velocity in the upper left corner was calculated to be negative for the fine grid 
and also by the Kreiss scheme. The very small pocket of recirculating flow evidenced 
by a positive Y in the lower right-hand corner of Fig. 5 did not appear in the 
15 x 15 second order calculation but was calculated in the 57 x 57 case. 

TABLE VI 

Calculated Value of the Velocity, U, 
at the Point (0.9286,0.0714) 

Method b3mer 

A -0.0662 
B -0.1184 
C -0.1327 
D -0.1323 
E +0.0573 

5 See Table IV for legend. 

Without presenting the full output for each of the methods, further comparisons 
are difficult, but in summary the Kreiss method showed extreme accuracy when 
compared to second order methods on the same grid. Needless to say the equivalent 
comparison of the Kreiss scheme on the 15 x 15 grid and the second order scheme 
on the 57 x 57 grid showed a saving of a factor of 20 in computer run time and a 
storage saving of about 3. 

One final test was performed to test the stability characteristics of the implicit 
method used. The time step was raised to five times the CFL limit and the same 
steady state solution was generated in one-third the computing time. A rise to 
ten times the CFL limit caused the solution to diverge, but this is not surprising 
since the coefficients ZJ and u in Eq. (13) are computed at the old time level, n, and 
only a few steps are taken in the Poisson solver. Thus, the linearization scheme 
deprives the technique of its true unconditional stability. 

CONCLUSIONS 

The compact fourth order differencing method proposed by Kreiss has been 
shown to be an effective technique in the computation of fluid mechanics problems. 
The accuracy of the method is unquestionably higher than second order methods, 
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and where exact solutions exist, has been shown to be fourth order. The method 
is stable under a variety of applied boundary conditions of varying order. A high 
order Pad6 boundary condition (22) has been shown to be the best condition which 
can be used given the restriction of a tridiagonal form, and this condition gives 
the most accurate results when used in conjunction with Kreiss’ Merencing 
technique. Thus, Kreiss’ method should be of great value in problems where 
storage limitations preclude second order methods, or even for general problems 
since the coding is simple, and time and storage requirements are quite low. 
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